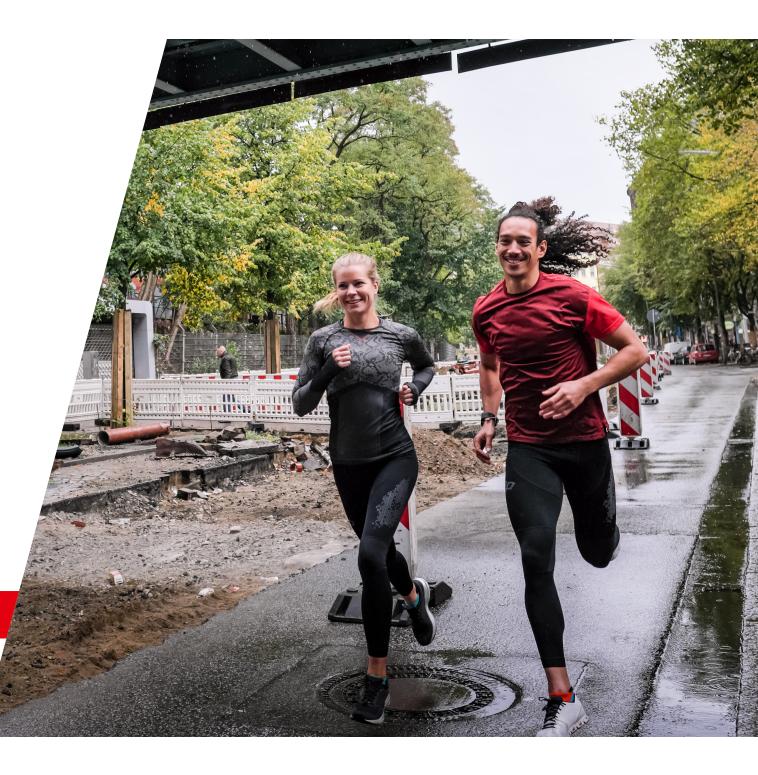


50 GOOD REASONS FOR COMPRESSION IN SPORTS


A SUMMARY OF SCIENTIFIC STUDIES (2019) The effects of compression in sports have become a strongly discussed topic and there are a multitude of scientific papers, articles, and commercial advertisements that show or don't show the various effects of compression garments in sports. In recent years we have seen an increase of scientifically based studies and a larger interest in compression technology for sport than ever before.

CEP took this opportunity to analyze the publicly available studies, and give you an overview of 50 positive studies, which we summarized by ourselves to our best knowledge and diligence. This brochure describes the studies in a very simple and intuitive way that allows you easily to understand the relevant elements of each study instantly. For those who want to deepen their understanding of single studies, we added the PubMed-ID so you can look up the study on your own and read the whole study (given the whole document is provided). For a better overview, we have grouped the studies into 4 main categories: performance, recovery, prevention and comfort.

We at CEP believe that innovation is a never-ending process, nurtured by new ideas, research and critical curiosity. We would like you to take part on that journey, learn, and grow together with us.

Thank you for your attention and enjoy the pressure

the highlighted benefits from the scientific studies were derived by CEP and only represent an interpretation by CEP

INDEX

PERFORMANCE

	#1	The effect of graduated compression stockings on running performance. [Ali, A et al., 2011]	8
	#2	Effects of a compression garment on sensory feedback transmission in the human upper limb. (Barss, T. et al., 2018)	8
	#3	Lower Limb Sports Compression Garments Improve Muscle Blood Flow and Exercise Performance During Repeated-Sprint Cycling. (Broatch, J. R. et al., 2018)	9
	#4	Effect of Compression Socks Worn Between Repeated Maximal Running Bouts. (Brophy-Williams, N. et al., 2018)	9
	#5	The effects of ionized and nonionized compression garments on sprint and endurance cycling. (Burden, R. J. & Glaister, M., 2012)	10
	#6	The effects of wearing undersized lower-body compression garments on endurance running performance. (Dascombe, B. J. et al., 2003)	10
	#7	Evaluation of a lower-body compression garment. [Doan B. K. et al., 2003]	11
	#8	Maximalist vs. minimalist shoes: dose-effect response of elastic compression on muscular oscillations. (Gellaerts, J. et al., 2017)	11
!	#9	Effects of Compression Tights on Recovery Parameters after Exercise Induced Muscle Damage: A Randomized Controlled Crossover Study (Hettchen, M. et al., 2019)	12
Q	#10	The effects of compression garment pressure on recovery from strenuous exercise. [Hill, J. et al., 2017]	12
~	#11	Efficacy of lower limb compression and combined treatment of manual massage and lower limb compression on symptoms of exercise-induced muscle damage in women. [Jakeman J. R. et al.,2010]	13
	#12	Effect of compression stockings on running performance in men runners. [Kemmler, W. et al., 2009]	13
	#13	Influence of compression garments on vertical jump performance in NCAA division I volleyball players. (Kraemer, W. J. et al., 1996)	14
\star	#14	Effects of wearing lower leg compression sleeves on locomotion economy. [Kurz, E. & Anders, C., 2018]	14
	#15	Compression sleeves increase tissue oxygen saturation but not running performance. [Ménétrier, A. et al., 2011]	15
	#16	Effects of three postexercice recovery treatments on femoral artery blood flow kinetics. (Ménétrier, A. et al., 2013)	15
	#17	Wearing Compression Garment after Endurance Exercise Promotes Recovery of Exercise Performance. (Mizuno, S. et al., 2016)	16
	#18	Can compression stockings reduce the degree of soccer match-induced fatigue in females? [Pavin, L. N. et al., 2018]	16
	#19	Effect of an ankle compression garment on fatigue and performance. [Šambaher, N. et al., 2016]	17
	#20	The effects of wearing lower-body compression garments (LBCG) during endurance cycling. (Scanlan, A. T. et al., 2008)	17
	#21	The effects of whole-body compression garments on prolonged high-intensity intermittent exercise. [Sear, J. A. et al., 2010]	18
	#22	Compression socks and the effects on coagulation and fibrinolytic activation during marathon running. [Zadow, E. et al., 2018]	18

RECOVERY

#23	Graduated compression stocking: Physiological and perceptual response during and after exercise [Ali, A et al., 2007]	20
#24	The effects of 4 different recovery strategies on repeat sprint-cycling performance. (Argus, C. K. et al., 2013)	20
#25	Compression socks and functional recovery following marathon running: a randomized controlled trial. (Armstrong, S. A. et al., 2015)	21

#26	Effects of graduated compression stockings on blood lactate following an exhaustive bout of exercise. [Berry, M. J. & McMurray, R. G., 1986]	21
#27	Effect of a Compressive Garment on Kinematics of Jump-Landing Tasks. [Britto, M. A. et al., 2017]	22
#28	Elastic stockings, performance and leg pain recovery in 63-year-old sportsmen. [Chatard, J. C. et al., 2004]	22
#29	Positive effect of lower body compression garments on subsequent 40-kM cycling time trial performance. [Glanville, K. M. de & Hamlin, M. J., 2012]	23
#30	Influence of compression garments on recovery after marathon running. [Hill, J. et al., 2014]	23
#31	Do compression garments enhance the active recovery process after high-intensity running? (Lovell, D. I. et al., 2011)	24
#32	The Effects of Compression Socks on Arterial Blood Flow and Arterial Reserves in Amateur Sportsmen [Mann, S. et al., 2016]	24
#33	Wearing Compression Tights on the Thigh during Prolonged Running Attenuated Exercise-Induced Increase in Muscle Damage Marker in Blood. [Mizuno, S. et al., 2017]	25
#34	Effects of graduated compression stockings on skin temperature after running. (Priego Quesada, J. I. et al., 2015)	25
#35	The effect of graduated compression tights, compared with running shorts, on counter movement jump performance before and after submaximal running. (Rugg, S. et al., 2013)	26
#36	Effect of Compression Garments on Physiological Responses After Uphill Running. [Struhár, I. et al., 2018]	26
#37	Enhanced muscle blood flow with intermittent pneumatic compression of the lower leg during plantar flexion exercise and recovery. [Zuj, K. A. et al., 2018]	27

PREVENTION

#38	Changes in tissue oxygen saturation with calf compression sleeve: before, during and after a cycling exercise. (Boucourt, B. et al., 2015)	29
#39	Perceived influence of a compression, posture-cueing shirt on cyclists' ride experience and post-ride recovery. (Cipriani, D. J. et al., 2014)	29
#40	Können Kompressionstextilien die propriozeptive Leistung verbessern - ist das Verletzungsprävention?/ Are compression garments able to improve proprioception as an effective method to prevent injury? [Edtinger, S. et al., 2015]	30
#41	The influence of below-knee compression garments on knee-joint proprioception. (Ghai, S. et al., 2018)	30
#42	Benefits of Compression Garments Worn During Handball-Specific Circuit on Short-Term Fatigue in Professional Players. (Ravier, G. et al., 2018)	31
#43	Effect of compression stockings on physiological responses and running performance in division III collegiate cross-country runners during a maximal treadmill test. (Rider, B. C. et al., 2014)	31
#44	Compression garments and cerebral blood flow: Influence on cognitive and exercise performance. (Smale, B. A. et al., 2018)	32
#45	Compression garments to prevent delayed onset muscle soreness in soccer players. [Valle, X. et al., 2013]	32
#46	Effects of gradual-elastic compression stockings on running economy, kinematics, and performance in runners. [Varela-Sanz, A. et al., 2011]	33
#47	The effect of compression socks worn during a marathon on hemostatic balance. [Zaleski, A. L. et al., 2015]	33

COMFORT

#48	Physiological effects of wearing graduated compression stockings during running. [Ali, A et al., 2010]	35
#49	Effect of wearing compression stockings on recovery after mild exercise-induced muscle damage. (Bieuzen, F. et al., 2014)	35
#50	Graduated compression stockings for runners: friend, foe, or fake? (Bovenschen, H.J. et al., 2013)	36

LIST OF ABBREVIATIONS

AnT	anaerobic threshold	PPT
BLa	blood lactate	PR
CG	compression garment	PT
СК	creatine kinase	RE
CMJ	counter movement jump	RER
CMJH	counter movement jump height	RFD
C-RP	C-reactive protein	RJ
CS	compression stocking/sock	RPE
СТ	control tigh	RSE
CWT	contrast water theraphy	SFA
DJ	drop jump	St02
DOMS	delayed onset muscle soreness	SV
EMG	electromyography	т
Ex	Experiment	T2
GCS	graduated compression socks	TAT
GRF	ground reaction force	TF
Hb	hemaglobin	TFPI
HHb	deoxyhemoglobin	TOI
HR	heart rate	t-PA
IL-6	plasma interleukin-6	TT
MAP	mean arterial pressure	TT
max	maximal	TTE
Mb	myoglobin	TTF
MCAv	blood flow velocity	VC
MS	muscle soreness	V02
MVIC	maximal voluntary isometric contraction	WBCG
nTHI	regional blood flow	YoYol
nTHi	tissue hemoglobin index	MIES
PE	perceived exertion	
PMT	progressive maximal test	

PPT	pressure pain threshold
PR	passive recovery
PT	protected tigh
RE	running economy
RER	respiratory exchange ratio
RFD	rate of force development
RJ	rebound jump
RPE	level of perceived perception
RSE	repeated sprint exercise
SFA	superficial femoral artery
St02	tissue oxygen saturation
SV	cardiac stroke volume
Т	Trial
T2	transverse relaxation time
TAT	thrombin-anti-thrombin
TF	tissue factor
TFPI	tissue factor pathway inhibitor
TOI	tissue oxygenation index
t-PA	tissue plasminogen activator
TT	time trial
TT	time to
TTE	time to exhaustion
TTF	time to fatigue
VC	vascular conductance
V02	oxygen uptake
WBCG	whole body compression garment
YoYoIEl2	YoYo Intermittent Endurance Test level 2
MIES	maximum isokinetic hip/leg-extensor strength

HE CEP

HE CEP

PERFORMANCE

NUMBER OF PARTICIPANTS	12
EXERCISE METHODS	Trial: 4 x 10 km run on outdoor 400-m track Test: countermovement jump, Blood-lactate, heart rate and perception of stockings
EXAMINED CG	low (12-15 mmHg), medium (18-21 mmHg) and high (23-32 mmHg) stockings
EXAMINED PARAMETERS	Leg power, BLa, HR and perception
RESULTS	countermovement jump: low and med > control and high; BLa: no change; HR: no difference; low more comfortable than mid and high

BENEFIT: Maintain leg power and stay more comfortable during running with compression.

PubMed-ID: 21293307

Effects of a compression garment on sensory feedback transmission in the human upper limb. [Barss, T. et al., 2018]

Non-Delt of TAKHOI ANTO	25
EXERCISE METHODS	Experiment 1: surface EMG at Rest
	Experiment Queurfees EMC during r

25

NUMBER OF PARTICIPANTS

	Experiment 2: surface EMG during rest, arm-cycling and reaching task
EXAMINED CG	elbow sleeves
EXAMINED PARAMETERS	H-reflexes and M-H recruitment curves
RESULTS	significant better reaching accuracy, better precision and sensitivity around applied joint.

BENEFIT: Improve precision and sensitivity during exercise.

PubMed-ID: 29641310

Lower Limb Sports Compression Garments Improve Muscle Blood Flow and Exercise Performance During Repeated-Sprint Cycling. [Broatch, J. R. et al., 2018]

NUMBER OF PARTICIPANTS	20
EXERCISE METHODS	2 cycling RSE sessions(repeated sprint exercise): 4 sets with 10x6 seconds maximal sprint [24 seconds recovery break during set and 120 seconds between sets]
EXAMINED CG	lower-limb compression garments
EXAMINED PARAMETERS	muscle oxygen comsumption and blood flow(mBF), Cycling performance(power output), HR and blood samples(BLa, pH, bicarbonate and base excess)
RESULTS	difference: higher peak power and mBF plus lower HR with CG; Rest: no significant differences for other parameters.

BENEFIT: Improved performance for highly instense and short workouts.

PubMed-ID: 29252067

.....

Effect of Compression Socks Worn Between Repeated Maximal Running Bouts. (Brophy-Williams, N. et al.,2018)

NUMBER OF PARTICIPANTS	12
EXERCISE METHODS	TT1: warm-up + 5 km - 1 hour break - TT2: warm-up + 5 km
EXAMINED CG	compression socks
EXAMINED PARAMETERS	Time for TT
	significant less time loss in TT2 compared to TT1 with CG, no signifi- cant differences in BLa, V02, perceived MS, fatigue and recovery

BENEFIT: Maintain your speed during high intensity running and intervall training.

The effects of ionized and nonionized compression garments on sprint and endurance cycling. (Burden, R. J. & Glaister, M., 2012)

	10
NUMBER OF PARTICIPANTS	10
EXERCISE METHODS	3 sprint trials, 3 endurance trials
EXAMINED CG	compression tights
EXAMINED PARAMETERS	power output, BLa, VO2 and HR
RESULTS	No significant effect for peak- and mean power and fatigue. V02, HF and TT did not differ relative to control. Significant effect on blood lactate in sprint an endurance trial.

BENEFIT: Less lactate development during your training.

PubMed-ID: 22124356

#	6
11	U

The effects of wearing undersized lower-body compression garments on endurance running performance. [Dascombe, B. J. et al., 2003]

NUMBER OF PARTICIPANTS	11

EXE	RCISE METHODS	progressive maximal tests (PMT) & TTE-test at 90% VO2max
EXA	MINED CG	compression tights, undersized and manufacturer-recommended
EXA	MINED PARAMETERS	V02, 02pulse, deoxyhemoglobin (HHb), running economy, oxyhemoglobin and TOI
RESI	ULTS	PMT: significant improvement of V02, 02-pulse and HHb similarly for

for recommended and undersized CG; decrease of running economy, decrease of oxyhemoglobin and TOI at low-intensity-speeds [8-10 km/h] and increase of nTHI and HHb plus lower HR and TOI at high-intensity-speeds TTE: growth of HHb for both CG, significantly positive effect on nTHI for undersized CG; no effect on performance

BENEFIT: Further improve your benefits for your cardiovascular system through compression.

PubMed-ID: 21725102

HR

Evaluation of a lower-body compression garment. (Doan B. K. et al., 2003)

NUMBER OF PARTICIPANTS	20
EXERCISE METHODS	60 meter sprints, countermovement jump
EXAMINED CG	compression shorts
EXAMINED PARAMETERS	TT, hip torque angle, skin temperature, muscle oscillation, Coun- ter-movement vertical jump height,
RESULTS	SPRINTS: reduced hip flexion, increased skin temperature and faster warming up; improved range of motion CMJ: less muscle oscillation, increased vertical jump height OVERALL: reduction of impact force by 27%
	at former in an and you are after ation and lower moves lo

BENEFIT: Reduce impact force, increase range of motion and lower muscle oscillation for a better recovery and performance.

PubMed-ID: 12875311

Maximalist vs. minimalist shoes: dose-effect response of elastic compression on muscular oscillations. [Gellaerts, J. et al., 2017]

NUMBER OF PARTICIPANTS	11
EXERCISE METHODS	16x1 min on treadmill
EXAMINED CG	compression garments
EXAMINED PARAMETERS	muscular oscillation
RESULTS	reduction of muscular oscillation

BENEFIT: Reduce muscle oscillation with compression.

Effects of Compression Tights on Recovery Parameters after Exercise Induced Muscle Damage: A Randomized Controlled Crossover Study (Hettchen, M. et al., 2019)

NUMBER OF PARTICIPANTS	19
EXERCISE METHODS	lower extremity resistance and EMS- training
EXAMINED CG	compression tights
EXAMINED PARAMETERS	MIES, CMJ
RESULTS	significant lower decrease of MIES and significant better CMJ with compression

BENEFIT: Significant reduced effects of exercise induced muscle damage through compression.

Efficacy of lower limb compression and combined treatment of manual massage and lower limb compression on symptoms of exercise-induced muscle damage in women. [Jakeman J. R. et al.,2010]

NUMBER OF PARTICIPANTS	32
EXERCISE METHODS	100 plyometric drop jumps, examinations after 1, 24, 48, 72 and 96 hours
EXAMINED CG	compression tights
EXAMINED PARAMETERS	perceived MS, CK, isontonic muscle strength, squat jump and CMJH
RESULTS	significant smaller reduction of isotonice muscle strength, squat jump and CMJH; significant moderation of perceived MS through a combination of CG and massage

BENEFIT: Keep your muscle soreness in check through a combination of massage and compression garments.

PubMed-ID: 20940646

Effect of compression stockings on running performance in men runners. [Kemmler, W. et al., 2009]

NUMBER OF PARTICIPANTS	21
EXERCISE METHODS	progressive treadmill test + retest within 10 days
EXAMINED CG	compression socks
EXAMINED PARAMETERS	running performance (time under load, work in kj and aerobic capaci- ty), BLa and VO2max
RESULTS	significantly better running performance (time under load and work); improved threshold(aerobic and anaerobic) performance with CG; no significant difference in V02max

BENEFIT: Better running performance at blood lactate thresholds and overall.

PubMed-ID: 19057400

#10 The effective strenuce (Hill, J.

The effects of compression garment pressure on recovery from strenuous exercise. (Hill, J. et al., 2017)

NUMBER OF PARTICIPANTS	45
EXERCISE METHODS	100 drop jumps
EXAMINED CG	compression tights (low and high compression LOW/HI)
EXAMINED PARAMETERS	perceived MS, MVC, CMJH, CK, CRP and Mb
RESULTS	significantly better recovery of MVC and CMJ with HI; higher jump at 24 h post exercise; no significant effects for MS, CK, CRP and Mb

BENEFIT: Deliver better performance with a faster recovery thanks to compression garments.

Influence of compression garments on vertical jump performance in NCAA division I volleyball players. [Kraemer, W. J. et al., 1996]

NUMBER OF PARTICIPANTS	36
EXERCISE METHODS	Jump tests
EXAMINED CG	compression shorts (normal fit and undersized CS/UCS)
EXAMINED PARAMETERS	CMJ (CMJHmax, force and power production)
RESULTS	no effects on max force or power of CMJHmax; significant higher power and force production with CS

#

NUMBER OF PARTICIPANTS

EXAMINED PARAMETERS

EXERCISE METHODS

EXAMINED CG

RESULTS

Compression sleeves increase tissue oxygen saturation but not running performance. (Ménétrier, A. et al., 2011)

NUMBER OF PARTICIPANTS	14
EXERCISE METHODS	2 treadmill tests (15 min rest, 30 min 60%, 15 min passive recovery, running to exhaustion, 30 min passive recovery)
EXAMINED CG	calf sleeves
EXAMINED PARAMETERS	St02, TTE
RESULTS	significant StO2 increase at rest and during recovery. No significant difference for TTE.

BENEFIT: Uphold your performance with compression garments.

BENEFIT: Increase your tissue oxygen saturation through compression sleeves.

12

PubMed-ID: 22052027

Effects of three postexercice recovery treatments on femoral artery blood flow kinetics. [Ménétrier, A. et al., 2013]

3 x tirinig exercise on cycle ergometer; 15 minutes recovery with either contrast water therapy[CWT], compression stockings[CS] or passive recovery(PR); 5 minutes performance test afterwards

significant better performance with CS and CWT compared to PR; CWT

22 NUMBER OF PARTICIPANTS

EXERCISE METHODS treadmill test at four different speeds

(Kurz, E, & Anders, C., 2018)

EXAMINED CG	calf sleeve

economy.

- EXAMINED PARAMETERS muscular activity through EMG
- RESULTS significant reduction of muscle activity per distance travelled.

BENEFIT: Save energy on your runs and go for longer distances with the same effort.

PubMed-ID: 29447545

Performance

significant effect compared to CS

compression socks[CS]

mean power output

BENEFIT: More power after short bouts of tiring exercise with compression recovery.

es

Effects of wearing lower leg compression sleeves on locomotion

14

Recovery Prevention Comfort

Wearing Compression Garment after Endurance Exercise Promotes Recovery of Exercise Performance. [Mizuno, S. et al., 2016]

NUMBER OF PARTICIPANTS	18
EXERCISE METHODS	Experiment 1: downhill running Experiment 2: level running, 30 minutes each
EXAMINED CG	compression tights
EXAMINED PARAMETERS	V02max, subjective feelings, jump performance(CMJ,RJ and DJ), circumference of the leg and blood variables
RESULTS	significant increase of CMJ and RJ

BENEFIT: Better recovery for jump performance with compression tights.

PubMed-ID: 27454135

.....

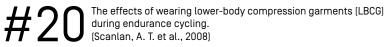
Effect of an ankle compression garment on fatigue and performance. (Šambaher, N. et al., 2016)

NUMBER OF PARTICIPANTS	15
EXERCISE METHODS	drop jumps (30 cm)
EXAMINED CG	ankle compression garment
EXAMINED PARAMETERS	Skin temperature, MVC force, EMG, DJ (20,35,50 cm), TTF, continuous DJs, GRF, Bla
RESULTS	Significant reduction of half-relaxation time and increase of skin temperature at post- warm up and post-fatigue; significant lower GRF with ankle compression at post-fatigue; other parameter did not differ significantly.

BENEFIT: Higher skin temperature and better control during recovery.

PubMed-ID: 25992662

H18 Can compression soccer match-ind (Pavin, L. N. et al.,


Can compression stockings reduce the degree of soccer match-induced fatigue in females? [Pavin, L. N. et al., 2018]

NUMBER OF PARTICIPANTS	20
EXERCISE METHODS	soccer match, agility test, standing heel-rise and YoYo Intermittent Endurance Test level 2 (YoYoIEl2)
EXAMINED CG	compression socks
EXAMINED PARAMETERS	Test scores, HR and perceived exertion
RESULTS	YoYoIEl2 and perceived exertion show no significant differences; agility test and heel-rise show significant better perormance than control-group

BENEFIT: More agility and less exercise induced fatigue with your compression garments.

PubMed-ID: 30318916

NUMBER OF PARTICIPANTS	12
EXERCISE METHODS	60 minutes cycling test
EXAMINED CG	compression tights
EXAMINED PARAMETERS	power output, BLa, HR, VO2 and muscle oxygenation
RESULTS	significant increase of power output at anaerobic threshold(AnT) and significant muscle oxygenation economy.

BENEFIT: More power at anaerobic threshold and a better ogygenation economy during exercise.

The effects of whole-body compression garments on prolonged #21 high-intensity intermittent exercise. [Sear, J. A. et al., 2010]

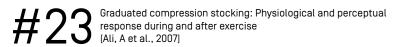
NUMBER OF PARTICIPANTS	8
EXERCISE METHODS	45 minutes high intensity exercise programm [treadmill]
EXAMINED CG	whole body compression garment [WBCG]
EXAMINED PARAMETERS	performance indicators (distance, v-specific distance, running speed), HR, BLa, TOI and nThi
RESULTS	increase of total distance covered and low-intensity acitivity distance compared to control; also higher average TOI in WBCG.

BENEFIT: Better performance through compression.

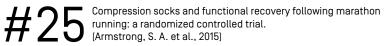
PubMed-ID: 20555284

#22	Compression socks and the effects on coagulation and fibrinolytic activation during marathon running. [Zadow, E. et al., 2018]
-----	---

0


NUMBER OF PARTICIPANTS	67
EXERCISE METHODS	Marathon
EXAMINED CG	compression socks
EXAMINED PARAMETERS	TAT, TF, TFPI and D-Dimer
RESULTS	significant lower increase of D-Dimer; increase of TF for all runners

BENEFIT: Less exercise induced hemostasis with compression garments.


PubMed-ID: 30043183

and no significant differences in TAT and TFPI.

RECOVERY

NUMBER OF PARTICIPANTS	14 T1 14 T2
EXERCISE METHODS	Trial 1: 2 multi-stage intermittent shuttle running test Trial 2: 10k run
EXAMINED CG	graduated compression stockings (free available)
EXAMINED PARAMETERS	delayed-onset-muscle soreness (DOMS)
RESULTS	T1: no differences T2: reduction of delayed-onset muscle soreness[DOMS]

NUMBER OF PARTICIPANTS	33
EXERCISE METHODS	Grade treadmill test to exhaustion 2 weeks before and 2 weeks after marathon
EXAMINED CG	compression socks
EXAMINED PARAMETERS	TTE, average and maximum HR
RESULTS	significant increase of TTE.

BENEFIT: Reduced muscle soreness after mediocre endurance training with compression socks

PubMed-ID: 17365528

<i>HJI</i>	The effects of 4 different recovery strategies on repeat sprint-cycling performance. [Argus, C. K. et al., 2013]	
#Z4	(Argus, C. K. et al., 2013)	

NUMBER OF PARTICIPANTS	11
EXERCISE METHODS	Trial: 4 x 30 seconds sprints on a cycle ergometer, 20 minutes recovery in between; mean power output, preceived recovery and blood lactate
EXAMINED CG	leg sleeves
EXAMINED PARAMETERS	Mean power output (Watt), perceived recovery and blood lactate
RESULTS	higher mean power output between trials compared to Control group

BENEFIT: Effective recovery between intensive exercises with compression clothing.

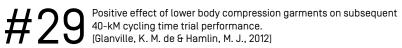
PubMed-ID: 23412547

BENEFIT: Improve your recovery after marathon running with compression socks.

PubMed-ID: 25627452

#26 Effects of graduated compression stockings on blood lactate following an exhaustive bout of exercise. (Berry, M. J. & McMurray, R. G., 1986)

NUMBER OF PARTICIPANTS	T1: 6 T2: 6
EXERCISE METHODS	Trial 1: two VO2 max - tests on a treadmill (no GCS/GCS) Trial 2: 3x3 minutes bicylcle ergometer of 110% VO2 max
EXAMINED CG	compression socks
EXAMINED PARAMETERS	V02, BLa and hematokrit
RESULTS	Experiment 1: no significant change in VO2 and VO2-recovery, lower lactate-values at 15 minutes. Experiment 2: significant post-exercise Bla for GCS


BENEFIT: Lower your lactate concentration with graduated compression stockings, during and after your exercise.

PubMed-ID: 3605315

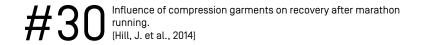
Comfort

NUMBER OF PARTICIPANTS	27
EXERCISE METHODS	4 different jump landing tests
EXAMINED CG	compression shorts
EXAMINED PARAMETERS	knee flexion, valgus angle and maximum jump height
RESULTS	no significant increase in max jump height; decrease of knee flexion and valgus range of motion

NUMBER OF PARTICIPANTS	14
EXERCISE METHODS	40-km ride 24 hours compression, 40-km ride, repeated one week later
EXAMINED CG	compression tights
EXAMINED PARAMETERS	TT-marathon, power output, oxygen cost amd perceived exertion
RESULTS	substantial improvement of performance TTm time through CG and higher average power output in second trial; no significant effects for oxygen cost or perceived exertion

PubMed-ID: 22240553

BENEFIT: Prevent potential knee injury with less dynamic valgus motion through compression.


PubMed-ID: 27552212

ДОО	Elastic stockings, performance and leg pain recovery in 63-year-old sportsmen. (Chatard, J. C. et al., 2004)	
\mathbf{T}	sportsmen.	
$\pi Z O$	[Chatard, J. C. et al., 2004]	

NUMBER OF PARTICIPANTS	12
EXERCISE METHODS	2x5minmaximalexercise,80minrest,twicea week for 2 weeks
EXAMINED CG	compression socks
EXAMINED PARAMETERS	perceived leg pain, Bla, blood plasma and hematocrit
RESULTS	higher leg power in second test with CS [2,1%]. Significant decrease of Bla and hematocrit through CS. no significant increase in plasma volume.

BENEFIT: Wear your compression garments for better recovery and a better performance afterwards.

PubMed-ID: 15455235

BENEFIT: Optimize your recovery with compression garments.

NUMBER OF PARTICIPANTS	24
EXERCISE METHODS	CG for 72 hours after completed marathon run
EXAMINED CG	compression tights
EXAMINED PARAMETERS	perceived MS, MVIC, CK and C-RP
RESULTS	significantly lower perceived MS and improved perception of recovery; no significant effects on MVIC, CK or C-RP and no significant rise of muscular strength or decrease of markes concerning exercise-induced muscle damage

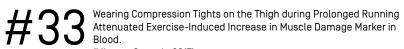
BENEFIT: Feel less muscle soreness and a faster recovery with compression.

PubMed-ID: 24714530

Comfort

Performance Recovery Prevention

‡	† (3	1	Do hig (Lo
+	+	3	I	

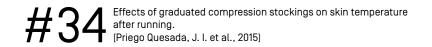

compression garments enhance the active recovery process after h-intensity running? vell, D. I. et al., 2011)

NUMBER OF PARTICIPANTS	25
EXERCISE METHODS	30-minute treadmill test with 2 different speed settings (6 blocks á 5 minutes)
EXAMINED CG	compression tights
EXAMINED PARAMETERS	BLa, HR and expiratory gases (RER, VO2)
RESULTS	lower HR and BLa and higher RER with CGs

BENEFIT: Compression helps you to keep a lower level of lactate and heart rate

PubMed-ID: 22082795

for a better active recovery, especially during HIIT and likewise.



(Mizuno, S. et al., 2017)

NUMBER OF PARTICIPANTS	30
EXERCISE METHODS	120 minutes uphill running (55% gradient)
EXAMINED CG	compression tights(CT), compression socks(CS)
EXAMINED PARAMETERS	HR, RPE, VO2(running economy), MVC of knee extension and plantar flexion, CMJ, DJ and perceived MS/fatigue, blood parameter (BLa, glucose, FFA, Mb, C-reacitve protein and IL-6)
RESULTS	no significant differences in HR, RPE, VO2, CMJ and DJ between the groups. Significant lower Mb in CT.

BENEFIT: Compression garments can help you to reduce muscle damage from your workout.

PubMed-ID: 29123488

<u> </u>		

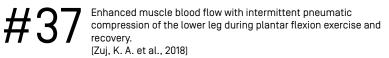
25

NUMBER OF PARTICIPANTS	44
EXERCISE METHODS	2x 10 minutes warm up + 20 minutes run at 75%
EXAMINED CG	compression socks
EXAMINED PARAMETERS	skin temperature, HR and perceived fatigue
RESULTS	greater increase of skin temperature with involved muscle tissue, no difference for HR and perceived fatigue.

BENEFIT: Stay warm with compression stockings.

PubMed-ID: 26267507

Comfort


NUMBER OF PARTICIPANTS	30
EXERCISE METHODS	two treadmill tests with a 1-week rest (9 km/h, 12%)
EXAMINED CG	compression socks
EXAMINED PARAMETERS	BLa, arterial blood flow and arterial reserve
RESULTS	bigger arterial reserve after run with CG and increase of arterial blood flow

#32 The Effects of Compression Socks on Arterial Blood Flow and Arterial Reserves in Amateur Sportsmen [Mann, S. et al., 2016]

The effect of graduated compression tights, compared with running shorts, on counter movement jump performance before and after submaximal running. (Rugg, S. et al., 2013)

NUMBER OF PARTICIPANTS	14
EXERCISE METHODS	15 minutes treadmill running
EXAMINED CG	compression tights
EXAMINED PARAMETERS	CMJ, RPE, comfort level
RESULTS	significant greater CMJ post run, lower level of RPE and greater comfort

NUMBER OF PARTICIPANTS	12
EXERCISE METHODS	3 minutes standing plantar flexion
EXAMINED CG	compression socks
EXAMINED PARAMETERS	SFA, MAP, SV, VC
RESULTS	greater increase in SFA flow with CG, greater VC directly after exercise

BENEFIT: Maintain your muscle power after a long and challenging endurance trial with compression garments.

PubMed-ID: 22692109

#36 Effect of Compression Garments on Physiological Responses After Uphill Running. [Struhár, I. et al., 2018]

NUMBER OF PARTICIPANTS 1	10
--------------------------	----

3x 8 km at 6% elevation EXERCISE METHODS

- EXAMINED CG calf sleeves (low grade, medium grade and high reverse grade)
- EXAMINED PARAMETERS CK, MS, ankle strength, plantar/dorsal flexor, performance time
- RESULTS best performance time for medium grade compression; increased peak torque of plantar flexion with medium grade CSs and highest pain tolerance shift.

BENEFIT: Apparent enhancement of runnig performance and lower muscle soreness with compression garments.

PubMed-ID: 29599865

BENEFIT: Increased limb blood flow and potentially improving recovery and performance.

PREVENTION

H38 Changes in tissue oxygen saturation with calf compression sleeve: before, during and after a cycling exercise. [Boucourt, B. et al., 2015]

NUMBER OF PARTICIPANTS	11
EXERCISE METHODS	15 minutes cycling exercise with increasing intensity
EXAMINED CG	calf sleeves
EXAMINED PARAMETERS	St02
RESULTS	significantly higher StO2 level before trial, 40W and 80W. No significant increase at 120-200W

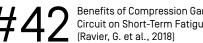
BENEFIT: Improve your tissue oxygen saturation for recovery during mild exercises.

PubMed-ID: 25286891

#39 Perceived influence of a compression, posture-cueing shirt on cyclists' ride experience and post-ride recovery. (Cipriani, D. J. et al., 2014)

	-	_	
	Γ.		
			1

NUMBER OF PARTICIPANTS	20
EXERCISE METHODS	53 cycling rides (average 95.48 km)
EXAMINED CG	compression shirts
EXAMINED PARAMETERS	perceived influence
RESULTS	athletes reported perceived benefit for the rides and their recovery perception. Higher approved through female athletes.


BENEFIT: Embrace compression, experience less discomfort and faster recovery for your training.

Können Kompressionstextilien die propriozeptive Leistung verbessern - ist das Verletzungsprävention?/Are compression garments able to improve proprioception as an effective method to prevent injury?* (Edtinger, S. et al., 2015)

NUMBER OF PARTICIPANTS	24
EXERCISE METHODS	standardised provocation protocol (one leg stand)
EXAMINED CG	compression socks (and knee bandage)
EXAMINED PARAMETERS	statistic data from the one leg stand through computer measurement.
RESULTS	significant increase of proprioceptive performance with CG and knee bandage.

BENEFIT: Better proprioceptive performance with compression garments.

H442 Benefits of Compression Garments Worn During Handball-Specific Circuit on Short-Term Fatigue in Professional Players. (Ravier, G. et al., 2018)

NUMBER OF PARTICIPANTS	18
EXERCISE METHODS	3x 12 minutes sprints, jumps and agility exercises
EXAMINED CG	compression tights
EXAMINED PARAMETERS	MVC, RFD, MS and PPT
RESULTS	no difference during specific exercises in performance; MVC, RFD and PPT significantly lower without CGs or regular gym short after exercise; highly significant smaller decrease of MVC with CGs; full recovery after 24 hours.

BENEFIT: Lose less power in an intense game or exercise with compression.

PubMed-ID: 26840438

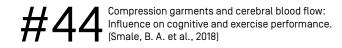
#

The influence of below-knee compression garments on knee-joint proprioception. (Ghai, S. et al., 2018)

NUMBER OF PARTICIPANTS	44
EXERCISE METHODS	active joint repositioning test
EXAMINED CG	compression socks
EXAMINED PARAMETERS	proprioception
RESULTS	highly significant and positive effect on proprioception with CG

Effect of compression stockings on physiological responses and running performance in division III collegiate cross-country runners during a maximal treadmill test. 43 (Rider, B. C. et al., 2014)

EXERCISE METHODS maximal treadmill test	
EXAMINED CG compression socks	
EXAMINED PARAMETERS HR, BLa, BLa-threshold, V02max, respiratory exchange rate, pe ved exertion and TTF	rcei-
RESULTS no significant differences before and during trial; lower Bla with during recovery; Longer time to fatigue with CS.	CS


BENEFIT: Better recovery through lower lactate concentration and less fatigue with compression garments.

PubMed-ID: 24172725

BENEFIT: Better proprioception through compression.

PubMed-ID: 27523397

Performance

NUMBER OF PARTICIPANTS	15
EXERCISE METHODS	4x 8 minute cycling + 4km time trial
EXAMINED CG	compression tights
EXAMINED PARAMETERS	middle cerebral artery blood flow velocity[MCAv] in relation to cognitive and exercise performance
RESULTS	Significant effect on cognitive accuracy during trial.

NUMBER OF PARTICIPANTST1: 16, T2: 12EXERCISE METHODS4x 6 minutes at recent half marathon pace on treadmill; time limit
test at 105% recent 10-km paceEXAMINED CGcompression socksEXAMINED PARAMETERSphysiological responses[V02max, HR], running economy[RE], running
kinematics and time limit test (T[lim], TTF)RESULTSno significant differences for RE; significant lower HR for CG compa-
red to control; no significant differences in kinematic during T[lim];
trend to lower TTF and lower V02max with CG during T[lim].

BENEFIT: Improved cognitive accuracy with compression during high-intensity workouts.

PubMed-ID: 29239696

	Compression garments to prevent delayed onset muscle soreness in	
#45	Compression garments to prevent delayed onset muscle soreness in soccer players. [Valle, X. et al., 2013]	

NUMBER OF PARTICIPANTS	15
EXERCISE METHODS	40 minutes treadmill with negative slope [10%]
EXAMINED CG	compression shorts
EXAMINED PARAMETERS	intracellular injury marker in protected tigh(PT) and control tigh(CT) through biopsy
RESULTS	26,7 percent lessinjury in PT compared to CT.

BENEFIT: Less muscle soreness and injury through compression garments.

PubMed-ID: 24596693

Performance

garments.

The effect of compression socks worn during a marathon on hemostatic balance. (Zaleski, A. L. et al., 2015)

BENEFIT: Lower heart rate during your competition with compression

PubMed-ID: 21912341

NUMBER OF PARTICIPANTS	20
EXERCISE METHODS	Marathon
EXAMINED CG	compression socks
EXAMINED PARAMETERS	caogulatory and fibrinolytic factors (TAT, D-Dimer, t-PA)
RESULTS	baseline: no significant differences; time trial: no significant time differences between the groups for the time trial, lower average t-PA with CG as well as average TAT

BENEFIT: Lower hemostatic activation with compression garments for endurance athletes.

PubMed-ID: 26212719

Recovery Prevention Comfort

H448 Physiological effects of wearing graduated compression stockings during running. (Ali, A et al., 2010)

NUMBER OF PARTICIPANTS	10
EXERCISE METHODS	3x 40 minutes treadmill-runs at 80% V0max
EXAMINED CG	low pressure (12-15 mmHg) and high pressure (23-32 mmHg) stockings
EXAMINED PARAMETERS	V02, HR and BLa
RESULTS	compression stockings with high pressure(23-32 mmHg) were con- sidered more tight and pain inducing than those with low pressure (12-15 mmHg). Creatine kinase, myoglobin, jump height and pressure sensitivity improved only directly after the exercise. Athletes rated the compression garments as more comfortable in comparison.

BENEFIT: More comfort during running with compression garments and better performance directly after.

PubMed-ID: 20354717

#449 Effect of wearing compression stockings on recovery after mild exercise-induced muscle damage. (Bieuzen, F. et al., 2014)

NUMBER OF PARTICIPANTS	11
EXERCISE METHODS	3 trail races
EXAMINED CG	compression socks
EXAMINED PARAMETERS	perceived MS, CK, CMJ and IL-6
RESULTS	perceived MS lower with CS, better isometric torque at 60 minutes and 24 hours post run, plus better CMJ-recovery

BENEFIT: Experience less muscle soreness and recover faster from trail runs.

PubMed-ID: 23751727

Comfort

COMFORT

Graduated compression stockings for runners: friend, foe, or fake? (Bovenschen, H.J. et al., 2013)

NUMBER OF PARTICIPANTS 13 EXERCISE METHODS T1: 10- km run
T2: maximum exercise test EXAMINED CG compression socks EXAMINED PARAMETERS lower leg volume RESULTS reduction of leg volume through GCS after running

BENEFIT: Keep your legs slim after your run with compression garments.

PubMed-ID: 23672387

REFERENCES

- Ali, A., Caine, M. P. & Snow, B. G. (2007). Graduated compression stockings: physiological and perceptual responses during and after exercise. Journal of sports sciences, 25 [4], 413-419. doi:10.1080/02640410600718376
- Ali, A., Creasy, R. H. & Edge, J. A. (2010). Physiological effects of wearing graduated compression stockings during running. European journal of applied physiology, 109 [6], 1017-1025. doi:10.1007/s00421-010-1447-1
- Ali, A., Creasy, R. H. & Edge, J. A. (2011). The effect of graduated compression stockings on running performance. Journal of strength and conditioning research, 25 (5), 1385-1392. doi:10.1519/JSC.0b013e3181d6848e
- Argus, C. K., Driller, M. W., Ebert, T. R., Martin, D. T. & Halson, S. L. (2013). The effects of 4 different recovery strategies on repeat sprint-cycling performance. International journal of sports physiology and performance, 8 [5], 542-548.
- Armstrong, S. A., Till, E. S., Maloney, S. R. & Harris, G. A. (2015). Compression socks and functional recovery following marathon running: a randomized controlled trial. Journal of strength and conditioning research, 29 (2), 528-533. doi:10.1519/JSC.000000000000649
- Barss, T. S., Pearcey, G. E. P., Munro, B., Bishop, J. L. & Zehr, E. P. (2018). Effects of a compression garment on sensory feedback transmission in the human upper limb. Journal of neurophysiology, 120 (1), 186-195. doi:10.1152/jn.00581.2017
- Berry, M. J. & McMurray, R. G. (1987). Effects of graduated compression stockings on blood lactate following an exhaustive bout of exercise. American journal of physical medicine, 66 (3), 121-132.
- Bieuzen, F., Brisswalter, J., Easthope, C., Vercruyssen, F., Bernard, T. & Hausswirth, C. (2014). Effect of wearing compression stockings on recovery after mild exercise-induced muscle damage. International journal of sports physiology and performance, 9 (2), 256-264. doi:10.1123/ijspp.2013-0126
- Boucourt, B., Bouhaddi, M., Mourot, L., Tordi, N. & Menetrier, A. (2015). Changes in tissue oxygen saturation with calf compression sleeve: before, during and after a cycling exercise. The Journal of sports medicine and physical fitness, 55 (12), 1497-1501.
- Bovenschen, H. J., Booij, M. T. & van der Vleuten, C. J. M. (2013). Graduated compression stockings for runners: friend, foe, or fake? Journal of athletic training, 48 (2), 226-232. doi:10.4085/1062-6050-48.1.26
- Britto, M. A. de, Lemos, A. L., Dos Santos, C. S., Stefanyshyn, D. J. & Carpes, F. P. [2017]. Effect of a Compressive Garment on Kinematics of Jump-Landing Tasks. Journal of strength and conditioning research, 31 [9], 2480-2488. doi:10.1519/JSC.00000000001620
- Broatch, J. R., Bishop, D. J. & Halson, S. (2018). Lower Limb Sports Compression Garments Improve Muscle Blood Flow and Exercise Performance During Repeated-Sprint Cycling. International journal of sports physiology and performance, 13 (7), 882-890. doi:10.1123/ijspp.2017-0638
- Brophy-Williams, N., Driller, M. W., Kitic, C. M., Fell, J. W. & Halson, S. L. (2017). Effect of Compression Socks Worn Between Repeated Maximal Running Bouts. International journal of sports physiology and performance, 12 (5), 621-627. doi:10.1123/ijspp.2016-0162
- Burden, R. J. & Glaister, M. (2012). The effects of ionized and nonionized compression garments on sprint and endurance cycling. Journal of strength and conditioning research, 26 (10), 2837-2843. doi:10.1519/ JSC.0b013e318241e155
- Chatard, J. C., Atlaoui, D., Farjanel, J., Louisy, F., Rastel, D. & Guézennec, C. Y. (2004). Elastic stockings, performance and leg pain recovery in 63-year-old sportsmen. European journal of applied physiology, 93 [3], 347-352. doi:10.1007/s00421-004-1163-9
- Cipriani, D. J., Yu, T. S. & Lyssanova, O. (2014). Perceived influence of a compression, posture-cueing shirt on cyclists' ride experience and post-ride recovery. Journal of chiropractic medicine, 13 (1), 21-27. doi:10.1016/j.jcm.2014.01.007
- Dascombe, B. J., Hoare, T. K., Sear, J. A., Reaburn, P. R. & Scanlan, A. T. (2011). The effects of wearing undersized lower-body compression garments on endurance running performance. International journal of sports physiology and performance, 6 (2), 160-173.
- Doan, B. K., Kwon, Y.-H., Newton, R. U., Shim, J., Popper, E. M., Rogers, R. A. et al. (2003). Evaluation of a lower-body compression garment. Journal of sports sciences, 21 (8), 601-610. doi:10.1080/0264041031000101971
- Edtinger S, Landkammer Y, Bernecker R, Herfert J, Moder A, Wicker A. (2015). Können Kompressionstextilien die pro priozeptive Leistung verbessern - ist das Verletzungsprävention? Deutsch Zeitschrift für Sportmedizin, 66 (7-8), 174.
- Gellaerts, J., Pirard, M., Muzic, J., Peseux, M. & Ménétrier, A. (2017). Maximalist vs. minimalist shoes: dose-effect response of elastic compression on muscular oscillations. The Journal of sports medicine and physical fitness, 57 (10), 1290-1298. doi:10.23736/S0022-4707.16.06721-9
- Ghai, S., Driller, M. W. & Masters, R. S. W. (2018). The influence of below-knee compression garments on knee-joint proprioception. Gait & posture, 60, 258-261. doi:10.1016/j.gaitpost.2016.08.008

- Glanville, K. M. de & Hamlin, M. J. (2012). Positive effect of lower body compression garments on subsequent 40-kM cycling time trial performance. Journal of strength and conditioning research, 26 [2], 480-486. doi:10.1519/JSC.0b013e318225ff61
- Hettchen, M., Glöckler, K., Stengel, S. von, Piechele, A., Lötzerich, H., Kohl, M. et al. (2019). Effects of Compression Tights on Recovery Parameters after Exercise Induced Muscle Damage: A Randomized Controlled Crossover Study. Evidence-Based Complementary and Alternative Medicine, 2019 (11), 1-11. doi:10.1155/2019/5698460
- Hill, J., Howatson, G., van Someren, K., Gaze, D., Legg, H., Lineham, J. et al. (2017). The Effects of Compression-Garment Pressure on Recovery After Strenuous Exercise. International journal of sports physiology and performance, 12 (8), 1078-1084. doi:10.1123/ijspp.2016-0380
- Hill, J. A., Howatson, G., van Someren, K. A., Walshe, I. & Pedlar, C. R. (2014). Influence of compression garments on recovery after marathon running. Journal of strength and conditioning research, 28 [8], 2228-2235. doi:10.1519/JSC.000000000000469
- Jakeman, J. R., Byrne, C. & Eston, R. G. [2010]. Efficacy of lower limb compression and combined treatment of manual massage and lower limb compression on symptoms of exercise-induced muscle damage in women. Journal of strength and conditioning research, 24 (11), 3157-3165. doi:10.1519/JSC.0b013e3181e4f80c
- Kemmler, W., Stengel, S. von, Köckritz, C., Mayhew, J., Wassermann, A. & Zapf, J. (2009). Effect of compression stockings on running performance in men runners. Journal of strength and conditioning research, 23 (1), 101-105. doi:10.1519/JSC.0b013e31818eaef3
- Kraemer William J., Bush, J. A., Bauer, J. A., Triplett-McBride, N. T., Paxton, N. J., Clemson, A. et al. (1996). Influence of compression garments on vertical jump performance in NCAA division I volleyball players. Journal of strength and conditioning research, 10 (3). Zugriff am 21. November 2018 unter https://journals.lww.com/nsca-jscr/ Abstract/1996/08000/Influence_of_Compression_Garments_on_Vertical_Jump.9.aspx
- Kurz, E. & Anders, C. [2018]. Effects of wearing lower leg compression sleeves on locomotion economy. Journal of sports sciences, 36 (18), 2105-2110. doi:10.1080/02640414.2018.1439355
- Lovell, D. I., Mason, D. G., Delphinus, E. M. & McLellan, C. P. (2011). Do compression garments enhance the active recovery process after high-intensity running? Journal of strength and conditioning research, 25 [12], 3264-3268. doi:10.1519/JSC.0b013e31821764f8
- Mann, S., Ultsch, D., Dietl, M. & Jansen P. (2016). The Effects of Compression Socks on Arterial Blood Flow and Arterial Reserves in Amateur Sportsmen. Journal of sports sciences (1), 1-9. Zugriff am 21. November 2018 unter https:// www.researchgate.net/publication/311328404_The_Effects_of_Compression_Socks_on_Arterial_Blood_Flow_and_ Arterial_Reserves_in_Amateur_Sportsmen
- Ménétrier, A., Mourot, L., Bouhaddi, M., Regnard, J. & Tordi, N. (2011). Compression sleeves increase tissue oxygen saturation but not running performance. International journal of sports medicine, 32 [11], 864-868. doi:10.1055/s-0031-1283181
- Ménétrier, A., Mourot, L., Degano, B., Bouhaddi, M., Walther, G., Regnard, J. et al. (2015). Effects of three postexercice recovery treatments on femoral artery blood flow kinetics. The Journal of sports medicine and physical fitness, 55 (4), 258-266.
- Mizuno, S., Morii, I., Tsuchiya, Y. & Goto, K. (2016). Wearing Compression Garment after Endurance Exercise Promotes Recovery of Exercise Performance. International journal of sports medicine, 37 (11), 870-877. doi:10.1055/s-0042-106301
- Mizuno, S., Arai, M., Todoko, F., Yamada, E. & Goto, K. (2017). Wearing Compression Tights on the Thigh during Prolonged Running Attenuated Exercise-Induced Increase in Muscle Damage Marker in Blood. Frontiers in physiology, 8, 834. doi:10.3389/fphys.2017.00834
- Pavin, L. N., Leicht, A. S., Gimenes, S. V., da Silva, B. V. C., Simim, M. A. d. M., Marocolo, M. et al. (2018). Can compression stockings reduce the degree of soccer match-induced fatigue in females? Research in sports medicine (Print), 1-14. doi:10.1080/15438627.2018.1527335
- Priego Quesada, J. I., Lucas-Cuevas, A. G., Gil-Calvo, M., Giménez, J. V., Aparicio, I., Cibrián Ortiz de Anda, R. M. et al. (2015). Effects of graduated compression stockings on skin temperature after running. Journal of thermal biology, 52, 130-136. doi:10.1016/j.jtherbio.2015.06.005
- Ravier, G., Bouzigon, R., Beliard, S., Tordi, N. & Grappe, F. (2018). Benefits of Compression Garments Worn During Handball-Specific Circuit on Short-Term Fatigue in Professional Players. Journal of strength and conditioning research. doi:10.1519/JSC.000000000001342
- Rider, B. C., Coughlin, A. M., Hew-Butler, T. D. & Goslin, B. R. (2014). Effect of compression stockings on physiological responses and running performance in division III collegiate cross-country runners during a maximal treadmill test. Journal of strength and conditioning research, 28 (6), 1732-1738. doi:10.1519/JSC.0000000000287
- Rugg, S. & Sternlicht, E. [2013]. The effect of graduated compression tights, compared with running shorts, on counter movement jump performance before and after submaximal running. Journal of strength and conditioning research, 27 [4], 1067-1073. doi:10.1519/JSC.0b013e3182610956

- Šambaher, N., Aboodarda, S. J., Silvey, D. B., Button, D. C. & Behm, D. G. (2016). Effect of an Ankle Compression Garment on Fatigue and Performance. Journal of strength and conditioning research, 30 (2), 326-335. doi:10.1519/JSC.000000000001011
- Scanlan, A. T., Dascombe, B. J., Reaburn, P. R. J. & Osborne, M. (2008). The effects of wearing lower-body compression garments during endurance cycling. International journal of sports physiology and performance, 3 (4), 424-438.
- Sear, J. A., Hoare, T. K., Scanlan, A. T., Abt, G. A. & Dascombe, B. J. (2010). The effects of whole-body compression garments on prolonged high-intensity intermittent exercise. Journal of strength and conditioning research, 24 [7], 1901-1910. doi:10.1519/JSC.0b013e3181db251b
- Smale, B. A., Northey, J. M., Smee, D. J., Versey, N. G. & Rattray, B. (2018). Compression garments and cerebral blood flow: Influence on cognitive and exercise performance. European journal of sport science, 18 (3), 315-322. doi:10. 1080/17461391.2017.1413139
- Struhár, I., Kumstát, M. & Králová, D. M. (2018). Effect of Compression Garments on Physiological Responses After Uphill Running. Journal of human kinetics, 61, 119-129. doi:10.1515/hukin-2017-0136
- Valle, X., Til, L., Drobnic, F., Turmo, A., Montoro, J. B., Valero, O. et al. (2013). Compression garments to prevent delayed onset muscle soreness in soccer players. Muscles, ligaments and tendons journal, 3 [4], 295-302.
- Varela-Sanz, A., España, J., Carr, N., Boullosa, D. A. & Esteve-Lanao, J. (2011). Effects of gradual-elastic compression stockings on running economy, kinematics, and performance in runners. Journal of strength and conditioning research, 25 (10), 2902-2910. doi:10.1519/JSC.0b013e31820f5049
- Zadow, E. K., Adams, M. J., Wu, S. S. X., Kitic, C. M., Singh, I., Kundur, A. et al. [2018]. Compression socks and the effects on coagulation and fibrinolytic activation during marathon running. European journal of applied physiology, 118 (10), 2171-2177. doi:10.1007/s00421-018-3929-5
- Zaleski, A. L., Ballard, K. D., Pescatello, L. S., Panza, G. A., Kupchak, B. R., Dada, M. R. et al. (2015). The effect of compression socks worn during a marathon on hemostatic balance. The Physician and sportsmedicine, 43 (4), 336-341. doi:10.1080/00913847.2015.1072456
- Zuj, K. A., Prince, C. N., Hughson, R. L. & Peterson, S. D. (2018). Enhanced muscle blood flow with intermittent pneumatic compression of the lower leg during plantar flexion exercise and recovery. Journal of applied physiology (Bethesda, Md. : 1985), 124 [2], 302-311. doi:10.1152/japplphysiol.00784.2017

MEDICALLY BASED. ATHLETE DRIVEN. MADE BY MEDI. MADE IN GERMANY.

CEP is the performance brand of medi, a global leader in the healthcare market known for its innovative medical products. This enables CEP to create revolutionary sportswear that combines the highest level of performance and health.

For over 65 years, medi – headquartered in Bayreuth, Germany – has been developing and enhancing its unique medi compression as the core technology and other technologies that have a positive effect on the human body. Every single CEP product combines medical knowledge and the expertise of professional athletes in an unparalleled way.

These studies have been summarized by cep to our best knowledge in intent to simplify the scientific studies. CEP does not bear responsibility for the studies content.

 Import
 CEP - Department of medi GmbH & Co. KG, Medicusstraße 1, D-95448 Bayreuth, Tel. +49 921 912-750, info@cepsports.com

cepsports.com | medi-corporate.com